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Combinatorial Paralleland Sienti�Computing�Ali P�nary and Brue Hendriksonz1 IntrodutionCombinatorial algorithms have long played a pivotal enabling role in many applia-tions of parallel omputing. Graph algorithms in partiular arise in load balaning,sheduling, mapping and many other aspets of the parallelization of irregular appli-ations. These are still ative researh areas, mostly due to evolving omputationaltehniques and rapidly hanging omputational platforms. But the relationship be-tween parallel omputing and disrete algorithms is muh riher than the mere useof graph algorithms to support the parallelization of traditional sienti� omputa-tions. Important, emerging areas of siene are fundamentally disrete, and they areinreasingly reliant on the power of parallel omputing. Examples inlude omputa-tional biology, sienti� data mining, and network analysis. These appliations arehanging the relationship between disrete algorithms and parallel omputing. Inaddition to their traditional role as enablers of high performane, ombinatorial al-gorithms are now ustomers for parallel omputing. New parallelization tehniquesfor ombinatorial algorithms need to be developed to support these nontraditionalsienti� approahes.This hapter will desribe some of the many areas of intersetion between�P�nar is also supported by the Diretor, OÆe of Siene, Division of Mathematial, Informa-tion, and Computational Sienes of the U.S. Department of Energy under ontrat DE-AC03-76SF00098. Hendrikson was funded by the Applied Mathematis Researh program, U.S. De-partment of Energy, OÆe of Siene, and works at Sandia National Laboratories, a multiprogramlaboratoryoperated by SandiaCorporation, a LokheedMartin Company, for the U.S. Departmentof Energy under ontrat DE-AC-94AL85000.yHigh PerformaneComputing Researh Department, Lawrene Berkeley National Laboratory,Berkeley, CA, email: apinar at lbl dot gov.zDisrete Algorithms and Math Department, Sandia National Laboratories, Albuquerque, NM,email: bah at sandia dot gov.
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disrete algorithms and parallel sienti� omputing. Due to spae limitations, thishapter is not a omprehensive survey, but rather an introdution to a diverse setof tehniques and appliations with a partiular emphasis on work presented at theEleventh SIAM Conferene on Parallel Proessing for Sienti� Computing. Sometopis highly relevant to this hapter (e.g. load balaning) are addressed elsewherein this book, and so we will not disuss them here.2 Sparse Matrix ComputationsSolving systems of sparse linear and nonlinear equations lies at the heart of many si-enti� omputing appliations inluding aelerator modeling, astrophysis, nanosiene,and ombustion. Sparse solvers invariably require exploiting the sparsity strutureto ahieve any of several goals: preserving sparsity during omplete/inompletefatorizations, optimizing memory performane, improving the e�etiveness of pre-onditioners, and eÆient Hessian and Jaobian onstrution, among others. Theexploitation of sparse struture involves graph algorithms, and is probably the bestknown example of the role of disrete math in sienti� omputing.2.1 Sparse Diret SolversDiret methods for solving sparse linear equations are widely used espeially forsolving ill-onditioned systems suh as those arising in fusion studies or interiorpoint methods for optimization. They are also used when high auray solutionsare needed as with the inversion operator for the shift-and-invert algorithms foreigenomputations, solving oarse grid problems as part of a multigrid solver, andsolving subdomains in domain deomposition methods. The sizes of the problemsarising in these appliations neessitate parallelization, not only for performane,but also for memory limitations. Most diret solvers require one proessor to holdthe whole matrix for preproessing steps suh as reordering to preserve sparsityduring fatorization, olumn/row permutations to avoid or derease pivoting dur-ing numerial fatorization, and symboli fatorization, and this requirement tohave one proessor store the whole matrix is an important bottlenek to salability.Reent studies have addressed parallelization of these less time onsuming parts ofsparse diret solvers.Having large entries on the diagonal at the time of elimination is importantfor numerial auray during LU fatorization. The dynami approah for thisproblem is to move a large entry to the diagonal at eah step during fatorizationby row and olumn permutations. However, dynami pivoting hinders performanesigni�antly. Alternative is the stati approah where large entries are permutedto the diagonal a priori. Although somewhat less robust numerially, this statipivoting approah ahieves muh higher performane. The problem of permutinglarge entries to the diagonal to redue or totally avoid pivoting during fatoriza-tion, an be fruitfully reast as the identi�ation of a heavy, maximum-ardinalitymathing in the weighted bipartite graph of the matrix. An example is illustratedin Fig. 1. In the bipartite graph of a matrix, eah row and eah olumn of thematrix is represented by a vertex. An edge onnets a row vertex to a olumn
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� 1 3 4 2 0 �0BBBBB� :8 :2:3 :6 :1:6 :4:2 :8:1 :9 1CCCCCAFigure 1. Permuting large entries to the diagonal. Dark edges in thegraph orrespond to edges in the mathing in the bipartite graph of the matrix onleft. Matrix on right is the permuted matrix with respeted to the mathing whereolumns are reordered as (mate of the 1st row, mate of the 2nd row, : : :).vertex if the orresponding matrix entry at this row and olumn is nonzero, andthe weight of the edge is set equal to the absolute value of the matrix entry. Aomplete mathing between rows and olumns identi�es a reordering of olumns orrows of the matrix, in whih all the diagonal values are nonzero. Heavier weightededges in the mathing translate to larger values on the diagonal after permutation.Notie that a maximumweighted mathing maximizes the sum of absolute values ofdiagonal entries. By assigning the logarithms of absolute values of entries to edgesone an maximize the produt of diagonal entries with maximum mathing.While bipartite mathing is a well-studied problem in graph theory, designingparallel algorithms that perform well in pratie remains as a hallenge. Mostsequential algorithms for bipartite mathing rely on augmenting paths, whih ishard to parallelize. Bertsekas' aution algorithm is symbolially similar to Jaobiand Gauss-Seidel algorithms for solving linear systems, and thus more amenableto parallelization. As the name implies Bertsekas' algorithm resembles an aution,where the pries of the olumns are gradually inreased by buyers (rows) that arenot mathed. Eah row bids on the heapest olumn, and the proess ends, whenall rows are mathed to a olumn. Riedy and Demmel [18℄ studied the parallelimplementation of Bertsekas' aution algorithm. They observed, as in all parallelsearh algorithms, speedup anomalies with superlinear speedups and slowdowns.Overall, they showed that the aution algorithm serves very well as a distributedmemory solver for weighted bipartite mathing.Another important and hallenging problem in sparse diret solvers is the de-velopment of parallel algorithms for sparsity preserving orderings for Cholesky/LUfatorization. The two most widely used serial strategies for sparsity preservingorderings are instantiations of two of the most ommon algorithmi paradigms inomputer siene. Minimum degree and its many variants are greedy algorithms,while nested dissetion is an example of a divide-and-onquer approah. Nested
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dissetion is ommonly used for parallel orderings sine its divide-and-onquer na-ture has natural parallelism, and subsequent triangular solution operations on thefatored matrix grant better eÆieny on parallel systems. Nevertheless, paralleliz-ing minimum degree variants remain as an intriguing question, although previousattempts have not been very enouraging [6℄.Another omponent of diret solvers that requires a distributed algorithm isthe symboli fatorization phase [7℄ for sparse Cholesky/LU fatorization. Sym-boli fatorization is performed to determine the sparsity struture of the fatoredmatrix. With the sparsity struture known in advane, the numerial operationsan be performed muh more quikly. Symboli fatorization takes muh less timethan numerial fatorization, and is often performed sequentially in one proessor.A distributed memory algorithm however, is ritial due to memory limitations.Grigori et al. have studied this problem and reported promising initial results [7℄.A more in depth disussion on Sparse Diret methods an be found in Chap-ter ?? of this book.2.2 Deompositions with ColoringsIndependent sets and oloring algorithms are also ommonly used in sparse matrixomputations. A set of verties is independent if no edge onnets any pair of ver-ties in the set. A oloring is a union of disjoint independent sets that over all theverties. The utility of an independent set arises from the observation that none ofthe verties in the set depend upon eah other, and so operations an be performedon all of them simultaneously. This insight has been exploited in the parallelizationof adaptive mesh odes, in parallel preonditioning and in other settings. Algebraimultigrid algorithms use independent sets for oarse grid onstrution. Partitioningproblems that arise in the eÆient omputation of sparse Jaobian and Hessian ma-tries an be modeled using variants of the graph oloring problem. The partiularoloring problem depends on whether the matrix to be omputed is symmetri ornonsymmetri, whether a one-dimensional partition or a two-dimensional partitionis to be used, whether a diret or a substitution based evaluation sheme is to beemployed, and whether all nonzero matrix entries or only a subset need to be om-puted. Gebremedhin [5℄ has developed a uni�ed graph theoreti framework to studythe resulting problems, and developed shared memory parallel oloring algorithmsto address several of them.2.3 PreonditioningIterative methods for solving linear systems also lead to graph problems, partiularlyfor preonditioning. Inomplete fatorization preonditioners make use of many ofthe same graph ideas employed by sparse diret solvers. EÆient data struturesfor representing and exploiting the sparsity struture, and reordering methods areall relevant here. Domain deomposition preonditioners rely on good partitions ofa global domain into subproblems, and this is ommonly addressed by (weighted)graph or hypergraph partitioning. Algebrai multigrid methods make use of graphmathings and independent sets in their onstrution of oarse grids or smoothers.
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Support theory tehniques for preonditioning often make use of spanning trees andgraph embeddings.3 Utilizing Computational InfrastrutureUtilization of the underlying omputational infrastruture ommonly requires om-binatorial tehniques. Even for appliations where problems are modeled withtehniques of ontinuous mathematis, e�etive utilization of the omputationalinfrastruture requires deomposition of the problem into subproblems and map-ping them onto proessors, sheduling the tasks to satisfy preedene onstraints,designing data strutures for maximum uniproessors performane, and ommuni-ation algorithms to exhange information among proessors. Solution to all theseproblems require ombinatorial tehniques.3.1 Load BalaningOne area where disrete algorithms have made a major impat in parallel sienti�omputing is partitioning for load balane. The hallenge of deomposing an un-strutured omputation among the proessors of a parallel mahine an be naturallyexpressed as a graph (or hypergraph) partitioning problem. New algorithms ande�etive software for partitioning have been key enablers for parallel unstruturedgrid omputations. Some problems, e.g. partile simulations, are desribed mostnaturally in terms of geometry instead of the language of graphs. A variety of ge-ometri partitioning algorithms have been devised for suh problems. In addition,spae-�lling urves and otree methods have been developed to parallelize multipolemethods. Researh in partitioning algorithms and models ontinues to be an ativearea, mostly due to evolving omputational platforms and algorithms. For instanewith inreasing gap between omputation and ommuniation speeds, distributionof the ommuniation work has beome an important problem. The next generationpetaops arhitetures are expeted to have orders of magnitude more proessors.An inreased number of proessors, along with the inreasing gap between proessorand network speeds, will expose some of the limitations of the existing approahes.Novel deomposition tehniques and interproessor ommuniation algorithms willbe required to ope with these problems. Reent advanes in load balaning aredisussed in depth in Chapter ?? of this book.3.2 Memory PerformaneThe inreasing gap between CPU and memory performanes argues for the designof new algorithms, data strutures, and data reorganization methods to improveloality at memory, ahe, and register levels. Combinatorial tehniques ome tothe fore in designing algorithms that exhibit high performane on the deep memoryhierarhies on urrent arhitetures and on the deeper hierarhies expeted on thenext generation superomputers. Cahe oblivious algorithms [4℄, developed in thelast few years, hold the promise of delivering high performane for irregular problemswhile being insensitive to sizes of the multiple ahes. Another approah for better
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ahe utilization is ahe aware algorithms [?℄, where the ode is tuned to makethe working set �t into the ahe (e.g. bloking during dense matrix operations),or repeated operations are performed for the data already in the ahe (e.g. extraiterations for stationary point methods), sine the subsequent iterations ome at amuh lower ost when the data is already in the ahe.Performane of sparse matrix omputations are often onstrained by the mem-ory performane due to the irregular memory aess patterns and extra memoryindiretions needed to exploit sparsity. For sparse matrix-vetor multipliation, itis possible to reorder the matrix to improve memory performane. Bandwidth orenvelope redution algorithms have been used to gather nonzeros of the matrixaround the diagonal for a more regular aess pattern, and thus fewer ahe misses.A new more promising method is the bloking tehniques that have been used forregister reuse, and reduing memory load operations [19, 16, 10℄. These tehniquesrepresent the sparse matrix as a union of dense submatries. This requires eitherreplaing some strutural zeros with numerial zeros so that all dense submatriesare of uniform size [10℄, or splitting the matrix into several submatries so that eahsubmatrix overs bloks of di�erent sizes [19, 16℄. Experiments show that notablespeedups an be ahieved through these bloking tehniques, reahing lose to thepeak proessor performanes.3.3 Node AlloationA reent trend for parallel arhitetures is omputational lusters built of o�-the-shelf omponents. Typially in suh systems, ommuniation is slower, but it ispossible to build very large lusters, due to easy inrementability. With slow om-muniation, along with large numbers of proessors, hoosing whih set of proes-sors to perform a parallel job beomes a ritial task for overall performane bothin terms of the response time of individual tasks and system throughput. The prob-lem of hoosing a subset of proessors to perform a parallel job is studied as thenode alloation problem, and the objetive is to minimize network ontention byassigning jobs to maximize proessor loality. Bender et al. [12℄ empirially showeda orrelation between the average number of hops that a message has to go throughafter node alloation and the runtime of tasks. They also proposed node alloationheuristis that inrease throughput by 30% on average. Their algorithms linearly or-der the proessors of the omputational luster by using spae-�lling urves. Nodesare then alloated for a task, to minimize the span of proessors in this linear order.This algorithm requires only one pass over the linearized proessor array. To breakties, best-�t or �rst-�t strategies were studied, and �rst-�t performed slightly betterin the experiments. One diretion for further work is to lift the linearized proessorarray assumption and generalize the node alloation tehniques to higher dimensionswhere the onnetivity of the parallel mahine is more expliitly modeled.4 Parallelizing Irregular ComputationsIrregular omputations are amongst the most hallenging to parallelize. Irregularityan arise from omplex geometries, multisale spatial or temporal dependenies, or
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a host of other auses. As mentioned above, graphs and hypergraphs are often usedto desribe omplex data dependenies, and graph partitioning methods play a keyrole in parallelizing many suh omputations. However, there are many irregularappliations that annot be parallelized merely by partitioning, beause the datadependenies are more omplex than the graphs an model. Two examples aredisussed below: multipole alulations and radiation transport.4.1 Multipole CalulationsPerhaps a better de�nition of an irregular problem is one whose solution annot bedeomposed into a set of simple, standard, kernel operations. But with this def-inition, the spae of irregular problems depends upon the set of aepted kernels.As parallel omputing matures, the set of well-understood kernels steadily inreasesand problems that had one seemed irregular an now be solved in more straight-forward manners. An exellent example of this trend an be found in the work ofHariharan and Aluru [8℄ on multipole methods for many-body problems.Multipole methods are used to simulate gravitational or eletromagneti phe-nomena in whih fores extend over long ranges. Thus, eah objet in a simulationan e�et all others. This is naively an O(n2) alulation, but sophistiated al-gorithms an redue the omplexity to O(n logn) or even O(n). These multipolealgorithms represent olletions of objets at multiple sales, ombining the impatof a group of objets into a ompat representation. This representation is suÆientto ompute the e�et of all these objets upon far-away objets.Early attempts to parallelize multipole methods were omplex, albeit e�e-tive. Spae was partitioned geometrially and adaptively, load balaning was fairlyad ho, ommuniation was omplex and there were no performane guarantees.By anyone's rekoning, this was a hallenging, irregular omputation. In more re-ent work, Hariharan and Aluru [8℄ have proposed a set of ore data struturesand ommuniation primitives that enable muh simpler parallelization. In thiswork, the omplexity of early implementations is replaed by a series of alls tostandard parallel kernels like pre�x and MPI olletive ommuniation operations.By building an appliation out of well-understood steps, Hariharan and Aluru areable to analyze the parallel performane and provide runtime guarantees. Withthis perspetive, multipole algorithms no longer need be seen as irregular parallelomputations.4.2 Radiation Transport on Unstrutured GridsAnother example of an irregular omputation is the simulation of radiation trans-port on unstrutured grids. Radiation e�ets an be modeled by the disrete or-dinates form of the Boltzmann transport equation. In this method, the objet tobe studied is modeled as a union of polyhedral �nite elements, and the radiationequations are approximated by an angular disretization. The most widely usedmethod to solve these equations is known as soure iteration and relies on \sweeps"on eah disretized angle. A sweep operation visits all elements in the order of thespei�ed diretion. Eah fae of the element is either \upwind" or \downwind"
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1 Figure 2. Direted graph for the sweep operation.depending on the diretion of the sweep. Computations at eah node requires thatwe �rst know all the inoming ux, whih orresponds to the upwind faes, and theoutput is the outgoing ux, that orresponds to ux through downwind faes.As illustrated in Fig. 2, this proess an be formally de�ned using a diretedgraph. Eah edge is direted from the upwind vertex to the downwind one. Theomputations assoiated with an element an be performed if all the predeessorsof the assoiated vertex have been ompleted. Thus, for eah angle, the set ofomputations are sequened as a topologial sort of the direted graph. A problemarises, when the topologial sort annot be ompleted, i.e., the graph has a yle.If yles exist, the numerial alulations need to be modi�ed, typially by usingold information along one of the edges in eah yle, thereby removing the depen-deny. Deomposing the direted graph into strongly onneted omponents willyield groups of verties with irular dependenies. Thus salable algorithms foridentifying strongly onneted omponents in parallel are essential. Most algorithmsfor �nding strongly onneted omponents rely on depth-�rst searh of the graph,whih is inherently sequential. Pinar et al. [15℄ desribed an O(n lgn) divide-and-onquer algorithm that relies on reahability searhes. MLendon et al. [13℄ workedon an eÆient parallel implementation of this algorithm and applied it to radiationtransport problems.The eÆient parallelization of a sweep operation is ruial to radiation trans-port omputations. A trivial solution is to assign a set of sweep diretions to eahproessor, this however requires dupliating the mesh at eah proessor, whih is in-feasible for large problems. A salable solution requires distributing the grid amongproessors and doing multiple sweeps onurrently. This raises the questions of howto distribute the mesh among proessors and how to shedule operations on gridelements for performane.Sweep sheduling is a speial ase of the preedene-onstrained shedulingproblem, whih is known to be NP-Complete. For radiation transport, severalheuristi methods have been developed and shown to be e�etive in pratie [14, 17℄,but they lak theoretial guarantees. Reently, Kumar et al. [11℄ desribed the
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�rst provably good algorithm for sweep sheduling. Their linear time algorithmgives a shedule of length at most O(log2 n) times that of the optimal shedule.Their random delay algorithm assigns a random delay to eah sweep diretion.Eah mesh element is then assigned to a proessor uniformly at random. Eahproessor partiipates in the sweeps without violating the preedene onstraints,and applying a random delay to eah sweep. Kumar et al. show that this algorithmwill give a shedule of length at most O(log2 n) times the optimal shedule. Later,they propose an improved heuristi with the same asymptoti bound on the worstshedule length, but that performs better in pratie. Experimental results onsimulated runs on real meshes show that important improvements are ahieved byusing the proposed algorithms.5 Computational BiologyIn reent years, biology has experiened a dramati transformation into a om-putational and even an information-theoreti disipline. Problems of massive sizeabound in newly aquired sequene information of genomes and proteomes. Multi-ple alignment of the sequenes of hundreds of baterial genomes is a omputationalproblem that an be attempted only with a new suite of eÆient alignment algo-rithms on parallel omputers. Large-sale gene identi�ation, annotation, and lus-tering expressed sequene tags (EST) are other large-sale omputational problemsin genomis. These appliations are onstruted from a variety of highly sophis-tiated string algorithms. Currently there are more than 5 million human EST'savailable in databases and this olletion ontinues to grow. These massive datasets neessitate researh into parallel and distributed data strutures for organizingthe data e�etively.Other aspets of biology are also being transformed by omputer siene.Phylogenetis, the reonstrution of historial relationships between speies or in-dividuals, is now intensely omputational, involving string and graph algorithms.The analysis of miro-array experiments, in whih many di�erent ell types ansimultaneously be subjeted to a range of environments, involves luster analysisand tehniques from learning theory. Understanding the harateristis of proteininteration networks and protein-omplex networks formed by all the proteins of anorganism is another large omputational problem. These networks have the small-world property: the average distane between two verties in the network is smallrelative to the number of verties. Semanti networks and models of the world-wideweb are some other examples of suh small world networks. Understanding the na-ture of these networks, many with billions of verties and trillions of edges, is ritialto extrating information from them or proteting them from attak. A more de-tailed disussion on omputational problems in biology is provided in Chapter ??of this book.One fundamental problem in bioinformatis is sequene alignment, whih in-volves identifying similarities among given sequenes. Suh alignments are used to�gure out what is similar and what is di�erent in the aligned sequenes, whih mighthelp identify the genomi bases for some biologial proesses. One appliation of se-
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quene alignment is �nding DNA signatures. A signature is a group of subsequenesin the DNA that is preserved in all strains in a set of pathogens, but unique whenompared to all other organisms. Finding signatures requires multiple sequenealignments at the whole genome level. While dynami programming is ommonlyused to optimally align small segments, the omplexity of these algorithms is theprodut of the lengths of the sequenes being aligned. The omplexity, and thegap between its mathematial optimality and biologial e�etiveness make dynamiprogramming algorithms undesirable for whole genome level alignments. Hysomand Baldwin [9℄ worked on an alternative. They use suÆx trees to �nd long subse-quenes that are ommon in all sequenes. In a suÆx tree, eah suÆx is representedby a path from the root to a leaf, and its onstrution takes only linear time andspae. One the suÆx tree is onstruted, long ommon subsequenes an be easilyfound by looking at internal nodes of the tree. Among these long subsequenesanhors are hosen for the basis of alignment, so that in the �nal alignment anhorsare mathed to eah other, and the problem is deomposed to align subsequenesbetween the anhors. Hysom and Baldwin use this deomposition to parallelize thealignment proess.6 Information AnalysisAdvanes in tehnology have enabled prodution of massive volumes of data throughobservations and simulations in many sienti� appliations suh as biology, high-energy physis, limate modeling, and astrophysis. In omputational high-energyphysis, simulations are ontinuously run, and notable events are stored in detail.The number of events that need to be stored and analyzed is on the order of severalmillions per year. This number will go up dramatially in oming years as newaelerators are ompleted. In astrophysis, muh of the observational data is nowstored eletronially, reating a virtual telesope whose data an be aessed andanalyzed by researhers world wide. Genomi and proteomi tehnologies are nowapable of generating terabytes of data in a single day's experimentation. A simi-lar data explosion is impating �elds besides the onventional sienti� omputingappliations and even the broader soieties we live in, and this trend seems likelyto ontinue.The storage, retrieval, and analysis of these huge data sets is beoming an in-reasingly important problem, that ries out for sophistiated algorithms and highperformane omputing. EÆient retrieval of data requires a good indexing meha-nism, however even the indexing struture itself often oupies a huge spae due tothe enormous size of the data, whih makes the design of ompat indexing struturea new researh �eld [?℄. Moreover the queries on these data sets are signi�antly dif-ferent than those for traditional databases and so require new algorithms for queryproessing. For instane, Google's page ranking algorithm suessfully identi�esimportant web pages among those relevant to spei�ed keywords. This algorithmis based on eigenvetors of the link graph of the web. Linear algebra methods areused elsewhere in information proessing in latent semanti analysis tehniques forinformation retrieval. In a similar ross-disiplinary vein, understanding the output
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of large sale sienti� simulations is inreasingly demanding tools from learningtheory and sophistiated visualization algorithms.Graphs provide a nie language to represent the relationships arising in various�elds suh as the Web, gene regulatory networks, or people interation networks.Many suh networks have power law degree distributions. That is, the numberof nodes with d neighbors is proportional to 1=d� for some onstant � > 0. Thisonstant has been observed to be between 2 and 3 for a wide assortment of networks.One onsequene is that these networks have small diameters, O(log logn), wheren is the number of nodes. A deeper understanding of the properties of omplexnetworks, and algorithms that exploit these properties, will have a signi�ant impatupon our ability to extrat useful information from many di�erent kinds of data.The analysis of very large networks requires parallel omputing. To parallelizethe analysis, the network must �rst be divided among the proessors. Chow et al.have studied this partitioning problem [2℄. Partitioning a network into loosely-oupled omponents of similar sizes is important for parallel query proessing, sineloosely-oupled omponents enable loalizing most of the omputation to a proes-sor with limited ommuniation between proessors. Although existing partitioningtehniques are suÆient for many sienti� omputing problems, the data depen-denies in omplex networks are muh less strutured, and so new parallelizationtehniques are needed.7 Solving Combinatorial ProblemsThe inreasing use of ombinatorial tehniques in parallel sienti� omputing willrequire the development of sophistiated software tools and libraries. These librarieswill need to be built around reurring abstrations and algorithmi kernels. Oneimportant abstration for disrete problems is that of integer programming. Awide assortment of ombinatorial optimization problems an be posed as integerprograms. Another foundational abstration is that of graph algorithms. For both ofthese general approahes, good parallel libraries and tools will need to be developed.7.1 Integer ProgrammingMany of the ombinatorial optimization problems that arise in sienti� omputingare NP-hard, and thus it is unreasonable to expet an optimal solution to be foundquikly. While heuristis are a viable alternative for appliations where fast solversare needed and sub-optimal solutions are suÆient, for many other appliationsa provably optimal or near-optimal solution is needed. Examples of suh needsarise in vehile routing, resoure deployment, sensor plaement, protein struturepredition and omparison, robot design and vulnerability analysis. Large instanesof suh problems an only be solved with high-performane parallel omputers.Mixed-integer linear programming (MILP) involves optimization of a linearfuntion subjet to linear and integrality onstraints, and is typially solved inpratie by intelligent searh based on branh-and-bound and branh-and-ut (on-straint generation). Branh and Bound (B&B) reursively sub-divides the spaeof feasible solutions by assigning andidate values to integer variables, i.e., xi =
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xj xkFigure 3. Branh-and-bound algorithm0; 1; 2; : : :. Eah branh represents the subdomain of all solutions where a variablehas the assigned value, e.g., xi = 0. These steps orrespond to the \branhing" om-ponent of a B&B algorithm. The other important omponent is bounding, whihhelps avoid exploring an exponential number of subdomains. For eah subdomain alower bound on the minimum (optimal) value of any feasible solution is omputed,and if this lower bound is higher than the value of the best andidate solution, thissubdomain is disarded. Otherwise, B&B reursively partitions this subdomain andontinues the searh in these smaller subdomains. Optimal solutions to subregionsare andidates for the overall optimal. The searh proeeds until all nodes havebeen solved or pruned, or until some spei�ed threshold is met between the bestsolution found and the lower bounds on all unsolved subproblems.EÆieny of a B&B algorithm relies on availability of a feasible solution thatgives a tight upper bound on the optimal solution value, and a mehanism to �ndtight lower bounds on problem subdomains, to fathom subdomains early, withoutrepeated deompositions. Sine B&B an produe an exponential number of sub-problems in the worst ase, general and problem-spei� lower and upper boundtehniques are ritial to keep the number of subproblems manageable in pratie.Heuristis are ommonly used for upper bounds. What makes MILPs attrative formodeling ombinatorial models is that a lower bound on a MILP an be omputedby dropping the integrality onstraints and solving the easier linear-programmingrelaxation. Linear programming (LP) problems an be eÆiently solved with to-day's tehnology. However, tighter lower bounds neessitate losing the gap betweenLP polytope and the MILP polytope, that is narrowing the LP feasible spae toover only a little more than the integer feasible spae. This an be ahieved bydynami onstraint (a.k.a. utting plane) generation, either for the whole problemor for the subdomains.Branh-and-bound algorithms an e�etively utilize large numbers of proes-sors in a parallel proessing environment. However, the ramp-up phase remains asa hallenge. Ekstein et al. [3℄ designed and developed a Parallel Integer and Com-binatorial Optimizer (PICO) for massively parallel omputing platforms. They
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regionFigure 4. Cutting planes lose the gap between IP and LP feasible regions.observed that the presplitting tehnique that starts with branhing to deomposethe problem into one subdomain per proessor often leads to poor performane,beause it expands many problems that would be fathomed in a serial solution.Alternatively, they studied parallelizing the ramp-up phase, where many proessorswork in parallel on a single subdomain. This requires parallelization of preproess-ing, LP solvers, utting plane generation, and gradient omputations to help withhoosing whih subdomain to deompose. A more detailed disussion on massivelyparallel integer programming solvers an be found in Chapter ?? of this book.7.2 Libraries for Graph AlgorithmsThe importane of graph algorithms is growing due to the broad appliability ofgraph abstrations. This is partiularly true in bioinformatis and sienti� datamining. Sienti� problems often generate enormous graphs that an only be an-alyzed by parallel omputation. However, parallelization of graph algorithms isgenerally very hard and is an extremely hallenging researh �eld. Bader and ol-leagues have studied the parallelization of a number of fundamental graph opera-tions, suh as spanning trees and ear deompositions on SMPs for small numbersof proessors. In Bader's spanning tree implementation [1℄, eah proessor startsgrowing trees from di�erent verties by repeatedly adding a vertex adjaent to avertex in the urrent tree. Rae onditions are handled impliitly by the SMP,and load balaning is ahieved by work stealing between proessors. Bader andCong [1℄ also studied onstrution of a minimum spanning tree (MST), where theobjetive is to onstrut a spanning tree with minimum edge-weight sum. Theyused Boruvka's MST algorithm, whih labels eah edge with the smallest weightto join the MST, and at eah iteration adds the edge with minimum ost to thetree. Bader and Cong experimented with di�erent data strutures for Boruvka'salgorithm, and with a new algorithm where eah proessor runs Prim's algorithmuntil it is maximal, and then swithed to Boruvka's algorithm. Their approah wasthe �rst to obtain speedup on parallel MST algorithms.This and related work needs to be bundled into easy-to-use toolkits to failitatethe greater use of graph algorithms in parallel appliations.
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8 ConlusionsIn this hapter, we have introdued a few of the areas in whih ombinatorial al-gorithms play a ruial role in sienti� and parallel omputing. Although some ofthese examples reet deades of work, the role of disrete algorithms in sienti�omputing has often been overlooked. One reason for this is that the appliationsof ombinatorial algorithms are sattered aross the wide landsape of sienti�omputing, and so a broader sense of ommunity has been hard to establish. Thishallenge is being addressed by the emergene of ombinatorial sienti� omputingas a reognized subdisipline.It is worth noting that some of the most rapidly growing areas within sienti�omputing (e.g. omputational biology, information analysis, et.) are partiularlyrih in ombinatorial problems. Thus, we expet ombinatorial ideas to play anever-growing role in high performane omputing in the years to ome.AknowledgementsWe are grateful to Srinivas Aluru, David Bader, Chuk Baldwin, Mihael Bender,Edmond Chow, Jim Demmel, Tina Eliassi-Rad, Assefaw Gebremedhin, Keith Hen-derson, David Hysom, Anil Kumar, Fredrik Manne, Alex Pothen, Madhav Marathe,and Jason Riedy for their ontributions to the Eleventh SIAM Conferene on Par-allel Proessing for Sienti� Computing.
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